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Abstmt- When heat supply to a binary melt at its outer boundary is absent, macrokinetics of solidification 
are governed by progressive cooling of the melt rather than by withdrawal of an admixture. Because the 
former process is much faster than the latter one, a metastable region of concentrational supercooling 
arises and has time to expand before the ingot surface noticeably changes its position. This leads to bulk 
crystallization within such a region prior to solidification at the surface. If crystalline grains are forming 
and growing rapidly enough, the two-phase region is practically at the state of the~~~~c equilib~um. 
This case is considered under the assumptions that the melt phase diagram consists of straight liquidus 
and solidus lines with one eutectic point and that the physical parameters are constant. A simple self- 
similar solution of relevant equations is obtained which approximately describes unidirectional processes. 

1. INTRODUCTION AND BACKGROUND 

T~IE R+TE of solidification of binary melts and solu- 
tions is usually supposed to be determined by that of 
mass transport of an admixture either to or from the 
crystallization front [ 1,2]. Accordingly, the time scale 
of solidification then happens to be of the same order 
of magnitude as the relaxation time of the con- 
centration field. The latter quantity, tD w I “/D (lis the 
characteristic length and D is the diffusivity of the 
admixture in the liquid), is several orders of mag 
nitude higher than the thermal relaxation time 
t, N 12/a, a being the thermal diffusivity. That is why 
the temperature fields in both the melt and the alloy 
can be regarded as quasi-stationary during such a 
solidification process. 

This is encountered in practice if the heat released 
at the interface is removed through an ingot and there 
is a heat influx to a melt so that the actual temperature 
remains higher throughout the melt than the phase. 
transition temperature, depending upon the admix- 
ture concentration. When the front velocity increases, 
there may appear an adjoi~ng layer of con~ntrational 
supercooling where the relation between the tem- 
peratures mentioned is reversed [3]. This results in the 
initiation of a two-phase mushy region containing 
solid phase elements formed by either a system of 
growing dendrites or newly born crystals. As a conse- 
quence, the front ceases to be sharp and exhibits a 
complicated dendritic interface. The establishment of 
a steady regime is possible when the front velocity (u) 
and the mushy zone thickness (N D/u) are constant 
or quasi-stationary, depending on externally imposed 
conditions. Macrokinetics of solidification are 
governed, as before, by the rate of mass transfer. 
Considerable theoretical and experimental attempts 
have been and are being made in order to elucidate 

characteristics of dendritic interface growth and of the 
mushy zone structure (see, for example, refs. [4--g]). 

If there is no two-phase zone adjoining the front, 
the processes of directional solidification are studied 
theoretically in a standard manner with the help of 
the known Stefan probiem. Otherwise, the necessity 
arises to deal with the temperature and admixture 
con~ntration fields within the zone, which requires 
tedious and rather cumbersome numerical calcu- 
lation, with the results obtained being hardly of much 
help to ensure better understanding of the physics of 
the problem [8,9]. However, when the zone thickness 
is much smaller than the pertinent linear scales of the 
process under consideration, the zone itself may be 
successfully regarded as an interface of zero thickness. 
Then a new formulation of the corresponding math- 
ematical problem with an unknown boundary is con- 
ceivable, which modifies the Stefan problem by means 
of replacing the mass balance condition at a smooth 
interface with a new one stemming from the analysis 
of the zone structure. The latter condition has been 
formulated so far for the cases when the zone can be 
thought of as being approximately in the state of 
the~~ynamic equilib~um [lo]. This enables one to 
apply the well-developed mathematical technique to 
processes with a mushy zone and to derive physically 
transparent conclusions. 

The situation changes radically when there is no 
heat supply to the melt from an environment, as is the 
case, for example, in all solidification processes in 
closed cavities externally cooled at their boundaries. 
A thermal wave propagates into the melt much faster 
than the crystallization front moves and, thus, the 
metastable supercooled region, which allows new 
crystals to form, rapidly becomes very wide. It has to 
cover, in fact, all the liquid region in question before 
the front appreciably changes its position, if the con- 
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a thermal diffusivity Greek symbols 
A, A’ coordinates of the outer and inner CI parameter 

boundaries of the two-phase region dimensionless parameter, equation (9) 
(functions of time) “e temperature 

B, B’ dimensionless forms of A, A’, defined by 1 thermal conductivity 
equations (15) 7t n=3.14... 

c dimensionless con~ntration P density 
C specific thermal capacity d concentration 
D diffusivity of the admixture in the liquid v, concentration of the solid phase in the 
H length of experimental cell two-phase region. 
k equilibrium solute distribution coefficient 
I characteristic length Subscripts 
L latent heat of freezing 

“D 
thermal 

m liquidus slope diffusional 
n, R dimensionless parameters, equations (5) e eutectic 

and (6) I., liquid 
t time S solid 
T dimensionless temperature * referred to phase transition of pure 
li characteristic velocity scale solvent 
X coordinate initial and at infinity 
Z dimensionless variable, equation (I 1). 0” cold boundary. 

cept of temperature quasi-stationarity is presumed. 
New crystals, are able, then, to grow on either spon- 
taneously arising critical nuclei or impurities every- 
where in the melt. The onset of a steady regime of 
the solidification process is impossible under these 
conditions. This shows that the idea of the process 
being governed by slow diffusional transport is incor- 
rect under the present circumstances, and one needs 
to treat the mushy zone evolution by taking account 
of much lower time scales specific to heat conduction. 
On the other hand, just for that reason one is free to 
neglect diffusion and, consequently, the front motion 
while studying both the zone expansion and the 
growth of crystals inside the zone. 

Strangely enough, and as far as the authors are 
aware of, the existence and significance of such therm- 
ally controlled processes of directional solidification 
have not been clearly indicated, with the exception of 
the freezing of natural water solutions in porous media 
and some other geophysical phenomena [ 11, 121. 
Nevertheless, there are many experiments witnessing 
the formation of discrete crystals far ahead of the 
crystallization front at casting [13, 141 and a few 
attempts to attack the problem theoreti~lly have been 
made [ 151. It seems that the most simple and entirely 
convincing experimental conflation of the above 
reasoning is provided, perhaps, by a bottle of beer or 
mineral water taken out of a freezing chamber. 

If the temperature of an external cooler is above 
that of the eutectic point, the final state of the melt 
presents a suspension of microscopically inhomo- 
geneous crystalline grains in an ambient liquid 
medium in which the admixture concentration 
coincides with the eutectic one. 

The inequality t, << to follows from D CC Q, which 
always holds and ensures that the above reasoning is 
sound when only the molecular diffusion is present. 
Another situation takes place where there is a con- 
vective flow near the front due to either the crystal- 
melt density difference or the natural convection 
caused by the melt density dependence upon tem- 
perature and concentration variations in the gravity 
field and stimulating double-diffusive phenomena 
[16-181. In this case the convection dominates the 
mass transfer and an additional time scale appears, 
f, N l/u, u being the characteristic velocity scale. It 
is easy to see that the main conclusion concerning 
feasibility of thermally controlled solidification of 
binary melts remains true when t, << t,, that is, when 
1~ a/u. The latter inequality imposes a restriction 
from above onto the size I of the system under study. 
The restriction may well be fulfilled in many prac- 
ticable applications. 

The structure of the metastable mushy region 
depends, first of all, upon the relation between the 
kinetics of both the origin and growth of solid grains 
and the rate of the region broadening. When the latter 
is much slower than the former, the region is clearly 
near the tbe~od~~ic equilib~um. Its tem~rature 
then coincides with that of the phase transition at any 
point. This property permits the heat and mass 
transfer problem to be stated in the mushy region 
without going into particulars of the solid phase for- 
mation. It is worth noting that a reduction in the 
degree of metastability, attained through bringing 
down the supercooling, leads to the heat release inside 
the region and so somewhat hinders the melt cooling 
and diminishes the velocity of the outer region boundary. 
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2. STATEMENT OF THE PROBLEM 

I.& us consider a semi-space x > 0 filled with a 
binary melt whose initial temperature 0, and con- 
centration 0, are uniform. For the sake of simplicity, 
the reievant portion of the melt phase diagram is 
assumed to consist of two straight iiquidus and solidus 
lines with one eutectic point, as shown in Fig. 1. The 
incline parameter m of the liquidus and the equi- 
librium solute dist~bution coeflicient k are both con- 
stant. Let the temperature at the plane x = 0 be 
reduced at an initial moment t = 0 to a value 
8, < o;, = 6, -MG,, where 8, designates the phase 
transition temperature of a pure solvent. Then a meta- 
stable region forms near the plane and begins to 
broaden into the melt. The coordinate A(t) of its outer 
boundary, which can be conveniently defined as that 
corresponding to e(t,A) = fl’*, is a monotonously 
increasing function of time, A(0) = 0. If 0, happens 
to be smaller than even the eutectic temperature 8,, a 
front of complete solidi~~tion also appears at 
x = A’(r), A’(O} = 0, and follows the thermal wave of 
cooling SO that the regions 0 < x < A’(& A’(1) < x 
< A(t) and A(t) < x < co are occupied with the solid 
alloy, two-phase mixture and with the liquid melt, 
respectively. 

Below we neglect, in accordance with the above 
discussion, a slow process of either purely diffusive or 
convective solute mass transfer in all the regions 
indicated and assume the condition of thermo- 
dynamic equilibrium to be approximately valid 
inside the two-phase region. In order to leave the main 
ideas unencumbered with superiIuous details, we also 
suppose that the pertinent physical parameters are 
independent of temperature and solute concentration. 
This leads to the following set of equations governing 
the transfer in the alloy : 

p,Cs~=&~, O<x<A'(t) (1) 

in the nearly equilibrium two-phase region 

~[(l-~)u]+k~~=O, A’(t) <x<A(r) (2) 

FIG. 1. A sketch of the phase diagram used in the analysis. 

and in the melt 

(3) 

Here rp denotes the concentration of the solid phase 
in the two-phase mixture by volume, pY C, I and L 
are the density, the specific thermal capacity, the heat 
conducti~ty and the latent solidi~cation heat, respec- 
tively, and the subscripts s and L mark quantities 
pertaining to the solid and liquid phases. The heat 
capacity per unit volume of the mixture is defined as 
follows : 

In accordance with the mixture rule, an expression 
of this kind should be used for the effective thermal 
conductivity. This rule, however, is applicable merely 
to heterogeneous systems whose phases or ingredients 
possess identical topological properties. This is evi- 
dently not the case for disperse mixtures when there 
is no continuous infinite cluster formed by particles 
of the dispersed phase, and 

where F is a certain function of its arguments depend- 
ing on the type of particle packing and on the form of 
the particles. There are many empirical and theoretical 
formulae for F cited, some in ref. [19]. However, to 
simplify the matter further we assume the density 
and the thermophysical properties of the phases to be 
roughly the same, that is, p = pS = pL, C = C, = CL 
andA=&=&. 

However far fetched it sometimes is, the concept of 
the state of the two-phase mixture, being close to that 
of thermodynamic equilibrium, simplifies the problem 
to a great extent by means of enabling one to omit a 
kinetic equation governing the evolution of the dis- 
tribution of crystals over their size. 

The solution of equations (l)-(3) is subject to the 
following initial and boundary conditions : 

t = 0: A’(0) = A(0) = 0, @,(0,x) = 6, 

x=0: B,(t,O)=8,<8, 

x = A’(t) : f?,(t, A’) = oft, A’) = Q, 

x = A(t) : 6(t, A) = f?,(r, A) = B; = &--mb, 

x-+03: f?(t, x) --) 0,. (4) 

It is easy to see that there are two excessive conditions 
at the two-phase region boundaries as compared with 
the set of boundary conditions needed for a correct 
fo~ulation of the mathematicai problem. These serve 
to find the functions A’(t) and A(t). There is no con- 
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dition on cp at the solid surface x = A’(f) since the 
requirement for rp to be equal to unity, which is some- 
times used, is obviously wrong. On the contrary, the 
condition of this quantity being equal to zero at 
x = A(t) results from the binodal line equation. 

The third equation in (2) can be integrated without 
difficulty. By taking into account the conditions at 
x = A(t) from equation (4) one gets a familiar 
relationship [9, lo] 

p=l_’ 
1 

nr c=z 
c Q, ’ n=ll-’ (5) 

The second equation also yields 

i6 0,) T= T,-Rc, {T,T,) =F 
-XI 

, R=F. (6) 

Allowance for equations (5) and (6) in equa- 
tions (l)-(4) leads to a boundary problem containing 
the equations 

aT,_ I a2T 
__s 

at pc ax2 ) 
0 < x < A’(f) 

A’(l) < x < A(f) 

aTL 1. a2T, 
-=--_ 
at pc ax2 9 

A(f)<X<co (7) 

and initial and boundary conditions 

t = 0: A’(O) = A(0) = 0, T,(O,x) = 1 

x=0: T,(t, 0) = To, x -+ cc : TL(t, x) -+ 1 

x = /t’(t) : T,(t, A’) = T* - Rc,, c(t, A’) = c, 

JT, 
I 

;,+R$&dA 
9,k: dt 

x= A(t): TL(trA) = T.+-R, c(t,A) = 1, 

Here c, is the eutectic concentration divided by cot, 
To = 0,/B, and a dimensionless parameter 

E = ma, CjnL (9) 

is introduced in addition to the quantities defined in 
equations (5) and (6). 

The problem (7), (8) can be readily extended to 
cases when the boundary temperature 0, is larger than 
Be. To do so, one has to make allowance for only 
two regions occupied by the liquid and the two-phase 
mixture. In this case there is no region which would 
be entirely solid. The second and third equations in 
(7) hold good again but the former one is now defined 
within the range 0 < x < A(t). The conditions (8) are 
also retained, except that those at x = 0 and x = A(t) 
have to be replaced with 

x = 0: T(t,O) = To, 

c(t,O) = c,, = R-‘(T,-T,,) > c,. (10) 

In both cases generalization to solidification within 

a finite region is performed in quite a straightforward 
way. This amounts merely to substitution of a bound- 
ary condition imposed at the external boundary x = X 
for that at x --t co in equation (8). Likewise, it is simple 
to extend the formulation of equations (7) and (8) to 
non-unidirectional solidification processes by means 
of replacing a2/ax2 by the Laplace operator and a/ax 
in equation (8) by the operations of differentiation 
over respective coordinates normal to interfaces sepa- 
rating distinct regions which now replace the planes 
x = ,4’(t) and x = A(t). Thus, the statement of the 
problem suggested above is suitable, in fact. for a 
rather wide range of applications. 

Let us emphasize once more that there is a principal 
difference between diffusionally and thermally con- 
trolled processes of directional solidification. In the 
first case the temperature fields have time to adjust 
themselves to the solute concentration field in a melt 
and become, in this manner, quasi-stationary, 
whereas in the second case the latter field has prac- 
tically no time to change noticeably and so has to be 
regarded as a steady one. 

3. SELF-SIMILAR PROCESSES 

In order to make the basic physical features of the 
thermally controlled solidification clearer it is expedi- 
ent, as usual, to consider relatively simple examples 
allowing an analytical treatment. Self-similar regimes, 
if they exist, offer a good opportunity to do so. Let us 
bring into play a new dimensionless variable 

WL ( > 
112 

‘= 2mo,lt x’ (11) 

and assume all the unknown variables to be depen- 
dent solely on z. We then get from equation (7) the 
equations 

O<z<B’ 

B’<z<B 

B<Z<UI (12) 

and from equation (8) the conditions 

z=O: T,(O)=T,, z--tco: T,_(z) -+ 1 

z=B’: T,(B’) = T, - Rc,, c(B’) = c, 

z = B: T,_(B) = T.,-R, c(B) = 1 (13) 

and also 

z=B: z+R;=O 

z=B’: Br=g(z+R$). (14) 

The parameters n, R and E are defined in equations 
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(5% (6) and (9). The dimensional coordinates of the 
boundary planes are found from 

{A’, A} = {B’, B} p$yP. (15) 

A beneficial property of the problem (12), (13) con- 
sists in that it splits into three separate problems for 
each of the unknown variables which may be treated 
quite independently. A link between the Iatter prob- 
lems is due only to conditions (14). Without going 
into particulars, we point out that the same property 
is also inherent in more complicated problems listed 
at the end of the preceding section. It helps to a con- 
siderable degree to simplify the analysis. Solving these 
separate problems enables one to calculate the deriva- 
tive in equation (14) and to determine both B’ and B 

and, subsequently, A’ and A. 
Another possible approach is justified by the notion 

that the parameter E is usually small as compared with 
unity. Simple evaluation shows that E < 0.05-0.06, 
E < 3 x lo- ’ and E < 5 x lo-’ for water solutions of 
various salts and Fe-Ni and Al--& melts, respec- 
tively. Actually this parameter is proportional to the 
ratio of the inner melt overheat corresponding to the 
temperature difference ma, to the latent solidification 
heat. This permits the use of the classical perturbation 
method by means of introducing expansions of quan- 
tities of interest in powers of E : 

{TS,TL,c,B’,B}= ~E’{T,,T~,c,B’,B). (16) 
j=O 

In a general case this procedure can be shown to be a 
singular one requiring special means of regularization. 
If we restrict ourselves only to the first approximation, 
then the equations in both the ingot and the melt 
take the simplest form, d*T/dz’ = 0. The boundary 
condition imposed on the first one can be easily ful- 
filled. It is not so, however, for the equation in the 
infinite region which is due to a singularity caused by 
the infiniteness of the region. Really, however small 
the parameter E may be, the requirement of the second 
term in this equation in set (12) being much smaller 
than the first one is inevitably violated far away from 
the plane z = B. Bearing in mind that managing such 
singularities can be readily effected by means of the 
well-developed procedure of matching of asymptotic 
expansions and presents no principal difficulty in the 
problem under consideration, we restrict ourselves in 
what follows to a simple case when T.+ - R = 1. It is 

worthwhile noting that results are also approximately 
valid if 1 - (T* - R) cc 1 - T,, which is quite common 
in practice. In this case 

T, = T,+(T,-To)z/B’, TL = 1 (17) 

and the problem for c from equations (12)-(14) 
becomes 

2 

$ + $2 = 0, e(B’) = c,, 

2-B’ 

FIG. 2. Dimensioniess ~st~butions of the solute con- 
centration of the liquid phase within the two-phase region ; 

k = 0.1. 

dc 
c(B) = 1, dz 

Z 
=B = 0. 

The last condition results from the first one in equa- 
tion (14) and serves to determine B. 

Dependences of c upon z at different c, are plotted in 
Fig. 2. They describe the ~st~bution of con~ntration 
inside the mushy region expanding without bound. If 
a solidification process is developing in a finite range, 
the curves in Fig. 2 also characterize the process until 
plane x = A(t) reaches the external boundary. 
After that, the process loses its self-similar nature. The 
same curves also determine the quantity B depending 
on c, as on a parameter. The dependence of B-B’ 
upon c, is shown in Fig. 3. 

Taking account of equation (17), one gets from the 
second condition in equation (14) 

B+(Te-To) = 0 

whence 

B’ -_ !$ 

(19) 

This determines the solid surface motion if the con- 

6 

b 
I 4 

aA 

2 10-l 

0 10-2 

c* 
FIG. 3. Dependences of i&B’ and dcidz at z = B’ on c,; 

k = 0.1. 
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centration derivative is known. The latter can be 
found from the solution of equation (18) and is illus- 
trated in Fig. 3. 

The temperature and the volume concentration of 
the dispersed phase within the mushy region are now 
calculated from equations (5) and (6). The form of 
the temperature distribution repeats that of the profile 
of concentration c(z), whereas p(z) depends essen- 
tially on n. Typical dependences of cp on z at different 
n are presented in Fig. 4. 

To give an idea of the effect of the initial overheat of 
the melt, we consider, without going into particulars, 
results following from the solution of the above equa- 
tions in the region z > B at T* -R < 1. The rigorous 
solution leads to 

TL(z) = I- (1 -(T, -R)) erfc (,/(E/~)z) 

x [erfc(J(c/2)B)]-’ 

de I-(T,-R) 2n ‘P exp(-&z2/2) 

dz Z=B= - R y 0 erfc (,/(E/2)B) ’ 

whereas the utilization of the matching technique 
for inner and outer asymptotic expansions yields 

TL(z) = 1 - (1 - (T, - R)) erfc (J(E/~)z) 

dc 
dz Z=B = - 

l-(~-R)~;)‘.2exp(_$) 

instead of the corresponding relations included in 
equations (17) and (18). These expressions aid in 
obtaining small corrections to the values of B and B’ 

derived at T, - R = 1 and E = 0. 
A more detailed discussion of the influence of physi- 

cal and regime parameters upon both the velocities of 
the boundary planes and the solute and dispersed 
phase concentrations within the mushy region is 
unlikely to be of much use since its nature is rather 
evident from the formulae presented and from the 
curves in Figs. 24. 

In contrast to the usual diffusionally controlled pro- 
cesses, in the case under study the solute concentration 
in the solid is non-uniform on the linear scale of sep- 

0.6 
9 

0 1 2 3 4 5 6 

FIG. 4. Distributions of the volume concentration of the 
solid phase inside the two-phase region at c, = 4 and different 

n (numerical values on the curves). 

arate crystalline grains, which are inhomogeneous on 
the microscopic level. The solid alloy contains the 
grains and the material of the eutectic composition 
within the interstices. If Go > B,, the asymptotic state 
of the two-phase mixture attained at t -+ co cor- 
responds to a suspension of the grains in a liquid 
whose composition is determined by c0 from equation 
(10). The mushy region structure and the rate of its 
broadening are again described by the derived for- 
mulae and the curves at B’ equalling zero and c, being 
substituted by cO. 

Figure 5 demonstrates rather close agreement 
between experimental data obtained in ref. [20] for 
solidification of n-octadecane-n-hexadecane mixtures 
and the self-similar interpretation of these exper- 
iments according to the present paper. The theory 
leads to the equation A/H = r,/t, where H is the 
length of the experimental cell used in ref. [20]. Theor- 
etical curves obtained by the authors of ref. [20] by 
means of numerical calculation based on unwar- 
rantable usage of the lever rule are also shown. 

4. CONCLUDING REMARKS 

The majority of assumptions put forward above to 
simplify the mathematical part of the analysis are not 
of principal nature and can be successfully avoided 
without much difficulty at the cost of complicating the 
calculation. This statement is also true for extending 
the theory to problems, the conditioning and 
geometry of which are more complex than those of 
the problem actually studied. There are, however, cer- 
tain points that should be especially stressed. 

a6F (al 

I I I I I I 
0 1 2 3 4 5 6 

t(h) 

O6 - (bl 

.’ 
/H 

0.4 - &( ,‘H 
-- 

z . 

4 

1 I I 
0 1 2 3 4 5 6 

t(h) 

FIG. 5. Propagation of the outer boundary of the metastable 
region in cooled n-octadecane-n-hexadecane mixtures. 
Points and dashed lines, experiments and calculation of ref. 
[20] ; solid lines, the self-similar theory of this paper. (a) 
grn = 40% (n-hexadecane), 0; = 18.3”C, a = 0.234 hW’I’. 

(b) oW = 60%, 0; = 16.2”C, a = 0.200 h-‘“. 
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The first point concerns the neglect of convection 
irrespective of its origin. Taking into account the con- 
vective motion and convective transfer alters the situ- 
ation rather drastically, even with reference to therm- 
ally controlled solidification processes. Really, the 
form of both the heat and mass conservation equa- 
tions in the liquid and the two-phase regions under- 
goes a radical change so that the solution of these 
equations requires the use of more elaborate methods. 

The second point has relevance to solidification 
inside closed volumes with rigid boundaries and is con- 
nected with the alloy-melt density change. Even if the 
convective transfer due to this reason is negligible, the 
effect must be accounted for because it results in either 
an increase or a drop of the pressure depending on the 
sign of this density change. Variations of the pressure 
eventually become quite substantial and cause 
appreciable shifts in the phase equilibrium conditions. 
This has to be taken into account, beyond doubt, on 
the final stage of solidification in any closed volume. 

Finally, the third point pertains to the necessity of 
the allowance for deviations of an actual state of the 
two-phase region from that of thermodynamic equi- 
librium. This brings into play, along with the transfer 
equations, a kinetic equation governing the evolution 
of the crystal size distribution as well as relations 
describing the rate of crystal origin and growth. Apart 
from the fact that the deviations affect the thermal 
wave propagation velocity by decreasing the intensity 
of inner heat release, they also influence the size and 
properties of the crystalline grains being incorporated 
afterwards in the final ingot and, thus, have a bearing 
on the ingot microstructure. It can be easily imagined 
that one is able, in principle, to choose the external 
conditions of solidification in such a way as to try to get 
a desired structure. A constructive analysis of non- 
equilibrium effects within the expanding two-phase 
region can be performed, in principle, on the basis of 
the consideration and method developed in ref. [21]. 

In conclusion, it is worthwhile pointing out that 
thermally and diffusionally controlled processes pre- 
sent extreme models of directional solidification. The 
mere fact that real processes can differ greatly from 
such idealization suggests the necessity to obtain cor- 
rections for the solute transfer in the first case and for 
the non-stationarity of temperature in the second case. 

All these questions are of primary interest and have 
to be looked upon, therefore, as certain indications 
concerning possible expedient directions of further 
work. 
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SOLUTION AFFINE DE LA SOLIDIFICATION THERMIQUEMENT CONTROLEE DE 
BAINS BINAIRES FONDUS 

R&wm&Quand on n’apporte pas de chaleur B travers le contour d’un bain binaire, la macrocinktique de 
solidification est gouvemb par le refroidissement progressif du bain plutBt que par le retrait d’un compos- 
ant. Le demier mkcanisme &tant plus rapide que I’autre, une rkgion m&stable de su~efroidissement 
con~ntrationu~re apparait et elle &tend avant que la surface du lingot change notablement de position. 
Ceci conduit a une cristallisation en masse dans une telie region, avant la solidification a la surface. Si Ies 
grains de cristaux se forment et croissent suffisamment rapidement, la region biphasique est pratiquement 
a f&at d’equilibre thermodynamique. On considbre ce cas en supposant que le diagramme de phase du 
bain consiste en des lignes droites de liquidus et solidus avec un point entectique et que les paramttres 
physiques sont constants. On obtient une simple solution affine des equations qui decrit de fapon approchie 

les mbanismes unidirectionnels. 

DAS GEBIET DER SELBST~HNLICHKEIT BE1 DER THERMISCH GESTEUERTEN 
VERFESTIGUNG BINARER SCHMELZEN 

Zusammeofassuog-Wird an der lugeren Grenzflache einer bit&en Schmelze keine W&me zugefiihrt, so 
wird die Makrokinetik der Verfestigung wesentlich starker von der fortschreitenden Abkiihlung der 
Schmelze als von den Entmischungsvorglngen bestimmt. Da der Abkiihlungsvorgang wesentlich schneller 
als der Entmischungsvorgang vor sich geht, entsteht ein metastabiles Gebiet mit konzentrationsbedingter 
Unterktihlung, welches sich so lange ausdehnt bis eine herannahende Ober%che seine Position wesentlich 
beeinfluBt. Dies fuhrt zu Blockk~stallisation innerhalb einer solchen Region noch bevor die Verfestigung 
an der Grenzgache auftritt. Wenn sich die Kristallk~mer schnell genug bilden und schnell genug wachsen, 
ist das Zweipha~ngebiet praktisch im the~od~amischen Gleichgewicht. Dieser Fall wird unter der 
Annahme betrachtet, dab die physikafischen Parameter konstant sind, da13 im Phasendiagramm die 
Liquidus- und Soliduslinien Geraden sind, und dag es nur einen Eutektischen Punkt gibt. So wird eine 
einfache Selbstiihnlichkeitsliisung der relevanten Gleichungen erhalten, welche die ungerichteten Vorgiinge 

naherungsweise beschreiben kann. 

ABTOMO~~~HbI~ PExkiM TEPM~~ECK~ KO~T~~~YEMOrO 3ATBEP~EBAH~~ 
6~HAPHbIX PACI’IJIABOB 

Am10~9---EcnH nonaon Terma K miemHeii rpaHHue pacnnaa oTcy~creyeT, To ripouecc HanpasneHHoii 
KpwrannH3asHH yTpaqHnaeT 06b11twfi +poHTanbHark xapaKTep. 06pa3oaatiHe mepnoii *asbl ozrio~- 
peMenH0 npoHcxomiT B IIpOTmKeHHOfi Hecra6HnbHofi o6nacm, IIpHMbrKaIoLIIeit K noBepxwoCTH CnHTKa. 

KHHeTHKa paCmHpeHHK 3TOii olinacm OnpeJleJKeTC~ CKOpOCTblO paClIpOCTpaHeHH~ TelIJIOBOii BOJUibl 

ox_naBC~emin B my6b pacnnasa, KoTopas Ha necKonbK0 ~~PS~KOB nbziue c~op0cmi &K)Y~HOHHO~~ 
BOJIHbI BbITeCHeHHR llBHrt~hfC5l ~~OHTOM. %lH 3apOWeHHe H pOCT KpHCrlLvlOB B MeTacTa6HJIbHOii 
o6nacm ITpOHCXOJlHT WCTaTOWIO WHTeHCHBHO, TO ABJ’X#M3iiaK 3OHa IBnKeTCR, IIO-C)liXeCTBy, PaBHOBeC- 

HO&. kfMeHH0 3Ta C”TyaQBS p”MOTpeHa B CTaTbe B ~~~O~O~eH~H, ‘ET0 @3OBYH) IWWpaMMY CRRaBa 

O6pa3ytoT IipSMbIe JIHHHH ~~KB~y~ li COJIHsyCa C C~~~~O~ TOrKOii 3BTeKTiiKH H @jlH3WieCKZi‘Z 

IlapaMeTpbi IIOCTORHHM. nOJIyW%iO npocTOe aBTOMO&%lbHOe pemeH5ie Iu[R TaKHX TepMFiCCKH XOliTpO- 
nwpyehwx npoueccos 3amepneeaHmk 


